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Abstract

A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage

evolution in aligned discontinuous ®ber polymer composites (AFPCs). In an attempt to estimate the overall elasto-

plastic-damage responses, an e�ective yield criterion is micromechanically derived based on the ensemble-volume

averaging process and ®rst-order (noninteracting) e�ects of eigenstrains stemming from the existence of (prolate)

spheroidal ®bers. The proposed e�ective yield criterion, in conjunction with the assumed overall associative plastic ¯ow

rule and hardening law, provides analytical foundation for the estimation of e�ective elastoplastic behavior of ductile

matrix composites. Uniaxial elastoplastic stress±strain behavior of AFPCs is also investigated. An evolutionary in-

terfacial debonding is subsequently employed in accordance with Weibull's probability function to characterize the

varying probability of ®ber debonding. Finally, the present damage model is compared with Halpin±Tsai's bounds for

sti�ness predictions and is applied to uniaxial loading to illustrate the damage behavior of AFPCs. Ó 2001 Elsevier

Science Ltd. All rights reserved.

Keywords: Damage constitutive model; Elastoplastic behavior; Progressive debonding; Weibull's probability function

1. Introduction

Damage accumulation in ®ber-reinforced organic matrix composites is a complicated progressive phe-
nomenon (Groves et al., 1987; Meraghni and Benzeggagh, 1995; Meraghni et al., 1996). It involves multiple
failure modes such as matrix cracking, ®ber breakage, delamination, etc., and any of these may begin in an
early loading stage and progressively accumulate inside the materials (Wang, 1984; Caslini et al., 1987). The
presence of damage can a�ect the mechanical properties and, subsequently, the response of composites.
Accordingly, it is essential in structural application of the composites for the accumulated damage to be
predicted and the e�ect of such damage on the response and failure of the structures to be well determined.
Reviews with more details on failure of ®ber-reinforced composites can be seen in Matzenmiller and
Schweizerhof (1991), Kutlu and Chang (1995), Meraghni and Benzeggagh (1995) and Meraghni et al.
(1996).
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In general, traditional continuum mechanics is based on the continuity, isotropy and homogeneity of
materials. It cannot directly solve the problem for heterogeneous composites since, microscopically, ®bers
or particles are present within the composites and have a signi®cant e�ect on the mechanical properties of
materials. Hence, micromechanics-based models have been developed to solve the problem on a ®ner scale
and to relate the mechanics of materials to their microstructure. Moreover, micromechanical approaches
enable us to evaluate and predict local stress and strain ®elds in each constituent. The derivation of the
constitutive equations in form of a phenomenological parameter model from entirely micromechanical
considerations creates a basis of foundation for a rigorous analysis of composite structures.

Although the concept of micromechanics can be traced back to the late 1930s (e.g., Goodier, 1937;
Eshelby, 1957, 1959, 1961), micromechanics has been widely developed since 1980s (e.g., Mura, 1987;
Nemat-Nasser and Hori, 1993; Mura et al., 1996). Reviews with more details on micromechanical pre-
diction of mechanical properties and failure of composites can be seen by Ju and Chen (1994a) and
Krajcinovic (1996), respectively. Most recently, a micromechanical analysis based on the modi®ed Mori±
Tanaka method was performed by Meraghni and Benzeggagh (1995) and Meraghni et al. (1996) to address
the e�ect of matrix degradation and interfacial debonding on sti�ness reduction in a random discontinuous
®ber composite. Their modeling was developed through a methodology of experimental identi®cation of
basic damage mechanisms, which involves amplitude analysis of acoustic emission and microscopic ob-
servations. Tohgo and Weng (1994) and Zhao and Weng (1995, 1996, 1997) proposed progressive inter-
facial damage models for ductile matrix composites. They used the probability distribution function of
Weibull (1951) to describe the probability of particle debonding. Recently, Ju and Lee (1999) developed a
micromechanical damage model to predict the overall elastoplastic behavior and damage evolution in
ductile matrix composites. In their derivation, to estimate the overall elastoplastic-damage behavior, an
e�ective yield criterion was derived based on the ensemble-volume averaging procedure and the ®rst-order
e�ects of eigenstrains stemming from the existence of inclusions.

Following the work of Zhao and Weng (1995) and Ju and Lee (1999), we propose a micromechanical
damage constitutive model for e�ective elastoplastic behavior of damaged composite materials to address
the damage response of aligned discontinuous ®ber polymer composites (AFPCs). In our derivation, ®bers
are assumed to be elastic (prolate) spheroids which are unidirectionally aligned in a ductile polymer matrix.
Furthermore, the ductile matrix behaves elastoplastically under arbitrary three-dimensional loading/
unloading histories. All ®bers are assumed to be noninteracting for dilute composite medium and initially
embedded ®rmly in the matrix with perfect interfaces. After the interfacial debonding between ®bers and
the matrix, these partially debonded ®bers are regarded as equivalent, transversely isotropic inclusions. It is
worth mentioning that since the scope of this work is to predict the overall damage behavior of AFPCs
globally, the local microcrack propagation and void nucleation at the interfaces are ignored in our deri-
vation. However, it is possible to extend the proposed damage model to accommodate local damage
evolution once new damage growth model and failure criterion are developed based on rigorous experi-
ments. The proposed damage model provides the analytical basis for the estimation of damage behaviors of
AFPCs. In the future, the averaging over all orientations upon governing constitutive ®eld equations will be
performed to obtain the constitutive relations and the overall yield function for random ®ber composites.
In addition, a new failure criterion based on experimental veri®cations for aligned discontinuous ®ber-
reinforced composites will be also proposed to perform failure analysis of AFPCs.

The present paper is organized as follows: In Section 2, to predict the overall elastoplastic-damage
behavior of AFPCs, an ``e�ective yield criterion'' is micromechanically constructed based on the ensemble-
volume averaging process and the ®rst-order e�ects of eigenstrains due to the existence of aligned dis-
continuous ®bers. The proposed elastoplastic-damage formulation is applied to uniaxial loading condition
in Section 2. An evolutionary interfacial debonding model is considered in accordance with Weibull's
statistical function to address the varying probability of ®ber debonding in Section 3. The explicit rela-
tionship is also derived in Section 3 to relate the average internal stresses of ®bers and the macroscopic total
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strain. In Section 4, the present damage model is compared with theoretical bounds and is applied to the
uniaxial tensile loading to predict the various stress±strain responses of AFPCs.

2. Overall elastoplastic behavior of ACFPMCs: a micromechanical framework

2.1. E�ective elastic moduli of composites with aligned discontinuous ®bers

Let us start by considering an initially perfectly bonded two-phase composite consisting of a matrix
(phase 0) with bulk modulus j0 and shear modulus l0, and aligned discontinuous, randomly dispersed
(prolate) spheroidal ®bers (phase 1) with bulk modulus j1 and shear modulus l1. When spheroidal in-
clusions (discontinuous ®bers) are aligned in the 1-direction, the composite as a whole is transversely
isotropic. Subsequently, as loadings or deformations are applied, some ®bers are partially debonded (phase
2), and these partially debonded ®bers are regarded as equivalent, transversely isotropic inclusions.

Following Zhao and Weng (1996, 1997), a partially debonded ®ber can be replaced by an equivalent,
perfectly bonded ®ber which possesses yet unknown transversely isotropic moduli. The transverse isotropy
of the equivalent ®ber can be determined in such a way that (a) its tensile and shear stresses will always
vanish in the debonded direction, and (b) its stresses in the bonded directions exist, since the ®ber is still
able to transmit stresses to the matrix on the bonded surfaces.

When the 1-direction is chosen as symmetric and the plane 2±3 isotropic, the stress±strain relation of a
typical transversely isotropic solid can be written as

r11

r22

r33

r23

r13

r12

0BBBBBB@

1CCCCCCA �
C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

26666664

37777775
�11

�22

�33

2�23

2�13

2�12

0BBBBBB@

1CCCCCCA: �1�

The components of the sti�ness matrix take the form

C22�C23

2
� k; C12 � l; C11 � �n;

C22ÿC23

2
� C44 � m; C55 � p;

�2�

where k is the plane stress bulk modulus for the lateral dilatation without longitudinal extension
(k � j� l=3), m is the rigidity modulus for shearing in any transverse direction, �n denotes the modulus for
the longitudinal uniaxial straining, l denotes the associated cross-modulus and p signi®es the axial shear
modulus (Hill, 1964). Therefore, the stress±strain relations for partially debonded composite can be re-
phrased as

1
2
�r22 � r33� � k��22 � �33� � l�11;

r11 � l��22 � �33� � �n�11;
r22 ÿ r33 � 2m��22 ÿ �33�;
r23 � 2m�23; r12 � 2p�12; r13 � 2p�13:

�3�

It can be easily seen that, by using the inverse of generalized Hook's law, the compliance matrix for a
transversely isotropic material may be expressed in the form
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2�13

2�12
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1CCCCCCA �
k

l2�k�n
l

2�l2ÿk�n�
l

2�l2ÿk�n� 0 0 0
l

2�l2ÿk�n�
ÿl2�k�n�m�n
4m�ÿl2�k�n�

l2ÿk�n�m�n
4m�ÿl2�k�n� 0 0 0

l
2�l2ÿk�n�

l2ÿk�n�m�n
4m�ÿl2�k�n�

ÿl2�k�n�m�n
4m�ÿl2�k�n� 0 0 0

0 0 0 1
m 0 0

0 0 0 0 1
p 0

0 0 0 0 0 1
p

26666666664
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r22

r33

r23

r13

r12

0BBBBBB@

1CCCCCCA: �4�

For the special case of uniaxial loading, Eq. (4) can be simpli®ed as

�ij �
k

ÿl2�k�n 0 0

0 l
2�l2ÿk�n� 0

0 0 l
2�l2ÿk�n�

264
375r11: �5�

The transversely isotropic ®ber can be considered to be under the condition of plane stress with the
components in the 1-direction being zero. To ensure the equivalence between a partially debonded isotropic
®ber and an equivalent, perfectly bonded transversely isotropic ®ber, the elastic moduli of a transversely
isotropic ®ber, with the condition r11 � r12 � r13 � 0, can be derived as

k2 � l1�3k1 ÿ l1�
k1 � l1

; l2 � 0; �n2 � 0; m2 � l1; p2 � 0; �6�

where the subscripts 1 and 2 refer to phases 1 and 2 moduli, respectively.
In accordance with the notation given in Eq. (2), the sti�ness tensor C2 for the equivalent, transversely

isotropic ®ber can be represented as

C2 � ~Fijkl�t1; t2; t3; t4; t5; t6�; �7�
where a transversely isotropic fourth-rank tensor ~F is de®ned by six parameters bm (m � 1±6):

~Fijkl�bm� � b1~ni~nj~nk~nl � b2�dik~nj~nl � dil~nj~nk � djk~ni~nl � djl~ni~nk�
� b3dij~nk~nl � b4dkl~ni~nj � b5dijdkl � b6�dikdjl � dildjk�; �8�

where ~n denotes the unit vector and dij signi®es the Kronecker delta. For a spheroid of a1 6� a2 � a3, the 1-
direction is chosen as symmetric and therefore we have ~n1 � 1; ~n2 � ~n3 � 0. In addition, the six parameters
on the right-hand side of Eq. (7) take the form

t1 � k2 � �n2 � m2 ÿ 4p2 ÿ 2l2; �9�
t2 � ÿ m2 � p2; �10�
t3 � ÿ k2 � m2 � l2; �11�
t4 � ÿ k2 � m2 � l2; �12�
t5 � k2 ÿ m2; �13�
t6 � m2: �14�

When considering the strain and stress ®elds at a local point x that is outside an inclusion, we de®ne a
fourth-rank tensor �G�x�, which is called the exterior-point Eshelby's tensor as (see, Eshelby, 1959; Mura,
1987)

�G�x� �
Z

X
G�xÿ x0�dx0 �x 2 V ÿ X�; �15�

where V is the volume of a representative volume element and X denotes the inclusion domain.
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Exterior-point Eshelby's tensor �G�x� of an ellipsoidal inclusion can be derived by introducing an unit
outward normal vector n̂, shown in Fig. 1, at a matrix point x on the new imaginary ellipsoid surface which
can be de®ned as (see also Sun, 1998)

n̂i � xi

�a2
i � #�

�����������
H�#�p ; �16�

where

H�#� � Hi�#�Hi�#�; �17�

Hi�#� � xi

a2
i � #

�18�

in which ai �i � 1; 2; 3� is one of the three semi-axes of the ellipsoid and # is taken as positive and can be
uniquely solved in terms of local point x of matrix and ai. Ju and Sun (1998) explicitly derived the exterior-
point Eshelby's tensor �G�x� of an ellipsoidal inclusion.

As a special case of an ellipsoid, if two of the three semi-axes of the ellipsoid are the same, then the
ellipsoid will become a spheroid. Let us assume that a1 6� a2 � a3, where the spheroid aspect ratio a is
de®ned as a � a1=a2. (Interior-point) Eshelby's tensor of a spheroidal inclusion can be obtained in a
transversely isotropic fourth-rank tensor form by letting k � 0 in the exterior-point Eshelby's tensor given
by Ju and Sun (1998) as

S�x� �
Z

X
G�xÿ x0�dx0; x 2 X

� ~Fijkl�S1; S2; S3; S4; S5; S6�; �19�
where the six parameters on the right-hand side of Eq. (19) take the form

Fig. 1. Schematic description of an imaginary ellipsoid surface and its unit outward normal vector.
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S1 � 1

16

16� 45-� 54a2 � 60-a2

�m0 ÿ 1��1ÿ a2� ; �20�

S2 � 1

16

8� 15-ÿ 8m0 ÿ 12-m0 � 2a2 � 8m0a2 � 12-m0a2

1ÿ m0 ÿ a2 � m0a2
; �21�

S3 � 1

16

3-� 10a2 � 12-a2

�m0 ÿ 1��a2 ÿ 1� ; �22�

S4 � 1

16

3-� 16m0 � 24-m0 � 10a2 � 12-a2 ÿ 16m0a2 ÿ 24m0-a2

�m0 ÿ 1��a2 ÿ 1� ; �23�

S5 � 1

16

-ÿ 8-m0 ÿ 2a2 ÿ 4-a2 � 8m0-a2

�m1 ÿ 1��a2 ÿ 1� ; �24�

S6 � 1

16

ÿ7-� 8m0-ÿ 2a2 � 4-a2 ÿ 8m0-a2

1ÿ m0 ÿ a2 � m0a2
�25�

with

- �
a

�a2ÿ1�3=2 �coshÿ1 aÿ a�a2 ÿ 1�1=2� for a > 1;

a
�1ÿa2�3=2 �a�1ÿ a2�1=2 ÿ cosÿ1 a� for a < 1:

8<: �26�

It is noted that Eshelby's tensor for a spheroidal inclusion in Eqs. (20)±(25) should be identical to the results
of Ju and Sun (1998).

E�ective elastic moduli of multi-phase composites containing randomly located, unidirectionally aligned
elastic ellipsoids were explicitly derived by Ju and Chen (1994a) accounting for far-®eld perturbations. For
a multi-phase composite, the e�ective elasticity tensor C� assuming no interaction among constituents reads

C� � C0 � I
n
� B � �Iÿ S � B�ÿ1

o
; �27�

where I is the fourth-rank identity tensor, ``�'' denotes the tensor multiplication and B takes the form,

B �
Xn

q�1

/q�S� Aq�ÿ1; �28�

in which n signi®es the number of inclusion phases of di�erent material properties, and /q denotes the
volume fraction of the q-phase. In addition, the fourth-rank tensor Aq is de®ned as

Aq � �Cq ÿ C0�ÿ1 � C0: �29�
Accordingly, in the case of aligned (in the x1-direction) ®ber-reinforced composites, the e�ective elastic

sti�ness tensor C� can be explicitly derived as

C� � ~Fijkl�i1; i2; i3; i4; i5; i6�; �30�
where the parameters of i1; . . . ; i6 are

i1 � w11 ÿ w12 ÿ w21 � w22 � 2u1 � 2u2 ÿ 4u3;
i2 � ÿu2 � u3;
i3 � w21 ÿ w22;
i4 � w12 ÿ w22;
i5 � w22;
i6 � u2

�31�
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in which the parameters w11; . . . ;w22 and u1; . . . ;u3 are given in Appendix A. In addition, the ®ve e�ective
elastic moduli of composites with aligned discontinuous ®bers read

k� � i5 � i6; l� � i4 � i5; m� � i6;

�n� � i1 � 4i2 � i3 � i4 � i5 � 2i6; p� � i2 � i6: �32�

2.2. E�ective elastoplastic behavior of composites with aligned discontinuous ®bers

We now consider the overall elastoplastic responses of progressively debonded ®ber-reinforced com-
posites which initially feature perfect interfacial bonding between ®bers and the matrix in two-phase
composites. It is known that partial interfacial debonding may occur in some ®bers under applied loading.
Therefore, an original two-phase composite may gradually become a three-phase composite consisting of
the matrix, perfectly bonded ®bers and partially debonded ®bers. In what follows, for simplicity, we will
regard partially debonded ®bers as equivalent, perfectly bonded transversely isotropic ®bers. For simplicity,
the von Mises yield criterion with isotropic hardening law is assumed here. Accordingly, at any matrix
material point, the stress r and the equivalent plastic strain �ep must satisfy the following yield function:

F �r; �ep� � H�r� ÿ K2��ep�6 0; �33�
in which K��ep� is the isotropic hardening function of the matrix-only material. Furthermore,
H�r� � r : Id : r denotes the square of the deviatoric stress norm, where Id signi®es the deviatoric part of
the fourth-rank identity tensor I, i.e.,

Id � Iÿ 1
3
1
 1; �34�

in which 1 represents the second-rank identity tensor and ``
'' denotes the tensor expansion.
Following Ju and Lee (1999), we denote by H�xjG� the square of the ``current stress norm'' at the local

point x, which determines the plastic strain in a composite for a given phase con®guration G. Since there is
no plastic strain in the elastic perfectly bonded ®bers or partially debonded ®bers, H�xjG� can be written as

H�xjG� � r�xjG� : Id : r�xjG� if x in the matrix;
0; otherwise:

�
�35�

In addition, hHim�x� is de®ned as the ensemble average of H�xjG� over all possible realizations where x is
in the matrix phase. Here, the angled bracket h�i signi®es the ensemble average operator. Let P �Gq� be the
probability density function for ®nding the q-phase (q � 1; 2) con®guration Gq in the composite. hHim�x�
can be obtained by integrating H over all possible perfectly bonded ®bers and partially debonded ®bers
con®gurations (for a point x in the matrix)

hHim�x� � H 0 �
Z
G1

H�xjG1�
� ÿ H 0

	
P �G1�dG�

Z
G2

H�xjG2�
� ÿ H 0

	
P �G2�dG; �36�

where H 0 is the square of the far-®eld stress norm in the matrix:

H 0 � r0 : Id : r0: �37�
As indicated, a matrix point receives the perturbations from perfectly bonded ®bers and partially

debonded ®bers. Therefore, the ensemble-average stress norm for any matrix point x can be evaluated by
collecting and summing up all the current stress norm perturbations produced by any typical perfectly

bonded ®ber centered at x
�1�
1 in the perfectly bonded ®ber domain and any typical partially debonded ®ber

centered at x
�1�
2 in the partially debonded ®ber domain, and averaging over all possible locations of x

�1�
1 and

x
�1�
2 . As a result, we arrive at
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hHim�x� � H 0 �
Z

x
�1�
1
62N�x�

H xjx�1�1

� �n
ÿ H 0

o
P x

�1�
1

� �
dx
�1�
1 �

Z
x
�1�
2
62N�x�

H xjx�1�2

� �n
ÿ H 0

o
� P x

�1�
2

� �
dx
�1�
2 � � � � ; �38�

where N�x� is the exclusion zone and P�x�1�1 � and P �x�1�2 � denote the probability density functions for ®nding

a perfectly bonded ®ber centered at x
�1�
1 and a partially debonded ®ber centered at x

�1�
2 , respectively. Here,

for simplicity, P �x�1�1 � and P �x�1�2 � are assumed to be statistically homogeneous, isotropic and uniform. That
is, we assume that the probability density functions take the form P �x�1�1 � � N1=V and P �x�1�2 � � N2=V ,
where N1 and N2 are the total numbers of perfectly bonded ®bers and partially debonded ®bers, respec-
tively, dispersed in a representative volume V . We de®ne a tiny equal-volume spherical probabilistic zone
with the radius a� � �a1a2

2�1=3
, or a� � a1=a2=3, where a � a1=a2 is the aspect ratio (the ratio of length to

diameter) of a spheroid. Further, owing to the assumption of statistical isotropy and uniformity, Eq. (38)
can be recast into a more convenient form:

hHim�x� � H 0 � N1

V

Z
r̂1>a�

dr̂1

Z
A�r̂1�
fH�r̂1� ÿ H 0gdA� N2

V

Z
r̂2>a�

dr̂2

Z
A�r̂2�
fH�r̂2� ÿ H 0g dA� � � � ; �39�

where A�r̂q� is a spherical surface of radius r̂q (q � 1; 2) in the probability space.
By dropping the higher order terms, the integral on the right-hand side of Eq. (39) can be evaluated and

we arrive at the ensemble-averaged current stress norm at any matrix point

hHim�x� � r0 : T : r0: �40�

The components of the positive de®nite fourth-rank tensor T read

Tijkl � ~Fijkl��t1;�t2;�t3;�t4;�t5;�t6�; �41�

where the six parameters on the right-hand side take the form,

�t1 �M11 ÿM12 ÿM21 �M22 � 2N1 � 2N2 ÿ 4N3;
�t2 � ÿN2 �N3;
�t3 �M21 ÿM23;
�t4 �M12 ÿM23;
�t5 �M23;
�t6 �N2;

�42�

in which the parameters Mij and Ni are given in Appendix B.
The ensemble-averaged current stress norm at a matrix point can also be expressed in terms of the

macroscopic stress �r. Following Ju and Chen (1994a), the relation between the far-®eld stress r0 and the
macroscopic stress �r takes the form

r0 � P : �r; �43�
where the fourth-rank tensor P reads

P � I�
X2

r�1

/r�Iÿ S� � �Ar � S�ÿ1 � ~Fijkl�p1; p2; p3; p4; p5; p6� �44�

and the components p1; . . . ; p6 are
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p1 �H11 ÿH12 ÿH21 �H22 � 2I1 � 2I2 ÿ 4I3; �45�
p2 � ÿI2 �I3; �46�
p3 �H21 ÿH23; �47�
p4 �H12 ÿH23; �48�
p5 �H23; �49�
p6 � I2 �50�

with

Hij � ÿ
Jij

2Ki
�i; j � 1; 2; 3�; �51�

Ii � 1

4Ki
�i � 1; 2; 3�; �52�

where

Ji1 �
�L22 �K2�Li1 ÿL21Li2

�L11 � 2K1��L22 �K2� ÿL12L21

�i � 1; 2; 3�; �53�

Ji2 � Ji3 �
�L11 � 2K1�Li2 ÿL12Li1

2�L11 � 2K1��L22 �K2� ÿ 2L12L21

�i � 1; 2; 3�; �54�

Ki � 1

2
�
X2

r�1

�1ÿ 2Bi�/r

2�Vr�i
�i � 1; 2; 3�; �55�

Lij �
X2

r�1

/r

X3

n�1

�Wr�nj
�Ain

�Vr�n

"
ÿ

�Aij

�Vr�j
ÿ �Wr�ij�1ÿ 2 �Bii�

�Vr�i

#
�i; j � 1; 2; 3�: �56�

By combining Eqs. (40) and (43), we arrive at the alternative expression for the ensemble-averaged
current stress norm (square) in a matrix point

hHim�x� � �r : �T : �r; �57�
where the positive de®nite fourth-rank tensor �T is de®ned as

�T � PT � T � P �58�
and can be shown to be

�Tijkl � �T1~ni~nj~nk~nl � �T2�dik~nj~nl � dil~nj~nk � djk~ni~nl � djl~ni~nk�
� �T3dij~nk~nl � �T4dkl~ni~nj � �T5dijdkl � �T6�dikdjl � dildjk�; �59�

where the components �T1; . . . ; �T6 are given in Appendix C.
The ensemble-volume averaged ``current stress norm'' for any point x in AFPCs can be de®ned as��������������

hHi�x�
p

� �1ÿ /1�
�����������������
�r : �T : �r

p
; �60�

where /1 is the current volume fraction of perfectly bonded ®bers. Therefore, the e�ective yield function for
the three-phase AFPCs can be proposed as

�F � �1ÿ /1�2�r : �T : �rÿ K2��ep� �61�
with the isotropic hardening function K��ep� for the three-phase composite. The e�ective ensemble-volume
averaged plastic strain rate for the AFPCs can be expressed as
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_��p � _k
o �F
o�r
� 2�1ÿ /1�2 _k�T : �r; �62�

where _k denotes the plastic consistency parameter.
Inspired by the structure of the micromechanically derived stress norm, the e�ective equivalent plastic

strain rate for the composite is de®ned as

_�ep �
��������������������������
2
3
_��p : �Tÿ1 : _��p

q
� 2�1ÿ /1�2 _k

������������������
2
3
�r : �T : �r

q
: �63�

The _k together with the yield function �F must obey the Kuhn±Tucker loading/unloading conditions. In what
follows, the simple power-law type isotropic hardening function is employed as an example

K��ep� �
��
2
3

q
ry

n
� h��ep��q

o
; �64�

where ry is the initial yield stress, and h and �q signify the linear and exponential isotropic hardening para-
meters, respectively, for the three-phase composite.

2.3. Elastoplastic stress±strain relationship for partially debonded three-phase AFPCs

In order to illustrate the proposed micromechanics-based elastoplastic constitutive damage model for
AFPCs, let us consider the example of uniaxial tensile loading.

The applied macroscopic stress �r can be written as

�r11 6� 0; all other �rij � 0: �65�
With the simple isotropic hardening law described by Eq. (64), the overall yield function reads

�F ��r; �ep� � �1ÿ /1�2�r : �T : �rÿ 2
3

ry

n
� h��ep��q

o2

: �66�
Substituting Eq. (65) into Eq. (66), the e�ective yield function of partially debonded three-phase AFPCs for
uniaxial loading is obtained as

�F � �1ÿ /1�2��T1 � 4 �T2 � �T3 � �T4 � �T5 � 2 �T6��r2
11 ÿ 2

3
ry

n
� h��ep��q

o2

: �67�
The macroscopic incremental plastic strain rate de®ned by Eq. (62) becomes

D��p � 2�1ÿ /1�2 Dk �r11

�T1 � 4 �T2 � �T3 � �T4 � �T5 � 2 �T6 0 0
0 �T3 � �T5 0
0 0 �T3 � �T5

0@ 1A �68�

for any stress beyond the initial yielding. Similarly, the incremental equivalent plastic strain can be written
as

D�ep � 2�1ÿ /1�2 Dkj�r11j
�����������������������������������������������������������������
2
3
��T1 � 4 �T2 � �T3 � �T4 � �T5 � 2 �T6�

q
: �69�

From Eqs. (5) and (32), the macroscopic incremental elastic strain takes the form

D��e �
k�

ÿl2��k��n�
0 0

0 l�
2�l2�ÿk��n�� 0

0 0 l�
2�l2�ÿk��n��

2664
3775D�r11: �70�
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Furthermore, the total incremental strain is the sum of the elastic incremental strain and plastic incremental
strain.

The positive parameter k �Pi�Dk�i is solved from the nonlinear equation obtained by enforcing the
plastic consistency condition �F � 0. Since only the uniaxial loading is under consideration, the nonlinear
equation reads (cf. Eq. (69))

�1ÿ /1�2� �T1 � 4 �T2 � �T3 � �T4 � �T5 � 2 �T6��r2
11

� 2

3
ry

8<: � h 2�1
"

ÿ /1�2k
�������������������������������������������������������������������
2

3
� �T1 � 4 �T2 � �T3 � �T4 � �T5 � 2 �T6�

r
j�r11j

#�q
9=;

2

: �71�

In the case of a monotonic uniaxial loading, the overall uniaxial stress±strain relation can be obtained by
integrating Eqs. (68) and (70) as follows:

�� �
k�

ÿl2��k��n�
0 0

0 l�
2�l2�ÿk��n�� 0

0 0 l�
2�l2�ÿk��n��

2664
3775�r11 � 2�1ÿ /1�2

X
i

��Dk�i��r11�i�

�
�T1 � 4 �T2 � �T3 � �T4 � �T5 � 2 �T6 0 0

0 �T3 � �T5 0
0 0 �T3 � �T5

0@ 1A; �72�

where �Dk�i is the ith iteration value of Dk and ��r11�i is the i-th iteration value of macroscopic uniaxial
stress.

3. Evolutionary interfacial debonding: probabilistic micromechanics

The progressive interfacial debonding may occur under increasing deformations and in¯uence the
overall stress±strain behavior of aligned discontinuous ®ber-reinforced composites. After the interfacial
debonding between ®bers and the matrix, the debonded ®bers lose the load-carrying capacity in the de-
bonded direction and are regarded as partially debonded ®bers. For convenience, following Tohgo and
Weng (1994) and Zhao and Weng (1995, 1996, 1997), we employ the average internal stresses of ®bers as the
controlling factor. The probability of partial debonding is modeled as a two-parameter Weibull process (see
Tohgo and Weng (1994), Zhao and Weng (1995), and Ju and Lee (1999)). Assuming that the Weibull (1951)
statistics governs, we can express the cumulative probability distribution function of ®ber debonding
(damage), Pd, at the level of hydrostatic tensile stress as

Pd���rm�1� � 1ÿ exp

"
ÿ ��rm�1

S0

 !M#
; �73�

where ��rm�1 � ���r11�1 � ��r22�1 � ��r33�1�=3 is the hydrostatic tensile stresses of the ®bers, the subscript ���1
denotes the ®ber phase, and S0 and M are the Weibull parameters.

Therefore, the current partially debonded ®ber volume fraction /2 at a given level of ��rm�1 is given by

/2 � /Pd���rm�1� � / 1

(
ÿ exp

"
ÿ ��rm�1

S0

 !M#)
; �74�

where / is the original ®ber volume fraction.
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The internal stresses of ®bers required for the initiation of interfacial debonding were explicitly derived
by Ju and Lee (1999). For multi-phase composites, the average internal stresses of ®bers can be expressed as

�r1 � C1 � I
h
ÿ S � �A1 � S�ÿ1

i
� I

"
ÿ
X2

m�1

/mS � �Am � S�ÿ1

#ÿ1

: �� � U : ��: �75�

By carrying out the lengthy algebra, the components of the positive de®nite fourth-rank tensor U are
explicitly given by

Uijkl � ~Fijkl�U1;U2;U3;U4;U5;U6�; �76�
where the de®nition of fourth-rank tensor ~F is given Eq. (8) and the inverse and product of fourth-rank
tensor ~F are given in the appendix of Ju and Chen (1994b). The components of the fourth-rank tensor U are
given by

U1 � 2l1D1; �77�
U2 � 2l1D2; �78�
U3 � k1�D1 � 4D2 � 3D3� � 2l1D3; �79�
U4 � 2l1D4; �80�
U5 � k1�D4 � 3D5 � 2D6� � 2l1D5; �81�
U6 � 2l1D6; �82�

where D1; . . . ;D6 are the parameters of the fourth-rank tensor ~Fijkl�D1; . . . ;D6�, which is the product be-
tween two fourth-rank tensors ~Fijkl�j1; . . . ; j6� and ~Fijkl�i1; . . . ; i6�. Parameters j1; . . . ; j6 are de®ned as

j1 � ÿ S1�b1 � 4b2 � b3 � 2b6� ÿ 4S2�b1 � 2b2 � b3� ÿ S4�b1 � 4b2 � 3b3� ÿ 2S6b1;

j2 � ÿ 2S2�b2 � b6� ÿ 2S6b2;

j3 � ÿ S3�b1 � 4b2 � b3 � 2b6� ÿ S5�b1 � 4b2 � 3b3� ÿ 2S6b3;

j4 � ÿ S1�b4 � b5� ÿ 4S2�b4 � b5� ÿ S4�b4 � 3b5 � 2b6� ÿ 2S6b4; �83�
j5 � ÿ S3�b4 � b5� ÿ S5�b4 � 3b5 � 2b6� ÿ 2S6b5;

j6 � 1

2
ÿ 2S6b6

in which the components of Eshelby's tensor for a spheroidal inclusion, S1; . . . ; S6, are given in Eqs. (20)±
(25) and b1; . . . ; b6 are the parameters of the fourth-rank tensor ~Fijkl�b1; . . . ; b6�, which is the inverse of
~Fijkl�d1; . . . ; d6� with the following parameters:

d1 � S1; d2 � S2; d3 � S3;

d4 � S4; d5 � 1

3

j0

j1 ÿ j0

�
ÿ l0

l1 ÿ l0

�
� S5; d6 � 1

2

l0

l1 ÿ l0

� S6: �84�

In addition, i1; . . . ; i6 are the parameters of the fourth-rank tensor ~Fijkl�i1; . . . ; i6�, which is the inverse of
~Fijkl�h1; . . . ; h6� with the following parameters:

h1 � /1�c1 ÿ /2g1; h2 � ÿ/1�c2 ÿ /2g2; h3 � ÿ/1�c3 ÿ /2g3;

h4 � ÿ /1�c4 ÿ /2g4; h5 � ÿ/1�c5 ÿ /2g5; h6 � 1

2
ÿ /1�c6 ÿ /2g6; �85�

where �c1; . . . ; �c6 are the parameters of the fourth-rank tensor ~Fijkl��c1; . . . ; �c6�, which is the product between
two fourth-rank tensors ~Fijkl�S1; . . . ; S6� and ~Fijkl�b1; . . . ; b6�. Furthermore, g1; . . . ; g6 are the parameters of
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the fourth-rank tensor ~Fijkl�g1; . . . ; g6�, which is the product between two fourth-rank tensors ~Fijkl�S1; . . . ;
S6� and ~Fijkl�e1; . . . ; e6�. Here, e1; . . . ; e6 are the parameters of the fourth-rank tensor ~Fijkl�e1; . . . ; e6�, which
is the inverse of ~Fijkl�f1; . . . ; f6� with the following parameters:

f1 � S1; f2 � S2; f3 � S3;

f4 � S4; f5 � 1

3

j0

j2 ÿ j0

�
ÿ l0

l2 ÿ l0

�
� S5;

f6 � 1

2

l0

l2 ÿ l0

� S6: �86�

In the case of tensile loading, the averaged internal stresses of ®bers can be obtained as follows:

��r11�1 � �U1 � 4U2 � U3 � U4 � U5 � 2U6���11 � �U4 � U5���22 � �U4 � U5���33; �87�
��r22�1 � �U3 � U5���11 � �U5 � 2U6���22 � U5��33; �88�
��r33�1 � �U3 � U5��11 � U5��22 � �U5 � 2U6���33; �89�

where ��11, ��22 and ��33 are the total (ensemble-volume averaged) strains in the 1, 2 and 3 directions, re-
spectively.

4. Numerical comparisons and simulations

The numerical and experimental studies to characterize damage evolution in discontinuous ®ber-rein-
forced composites have been limited in the literature until now. One such experimental and numerical study
on randomly oriented, discontinuous ®ber composites was made by Meraghni and Benzeggagh (1995) and
Meraghni et al. (1996). They introduced an experimental damage parameter, b, to allow the modeling of
damage mechanisms. A micromechanics-based analytical simulation was also presented and compared with
the experimental data.

In order to show the validity of the proposed micromechanical framework, we now compare our ana-
lytical predictions with bounds based on Halpin±Tsai micromechanics equations (Halpin and Kardos,
1976). One of the advantages of the Halpin±Tsai equations is that they cover both the particulate-rein-
forced case (®ber aspect ratio � unity, lower bound) and the continuous ®ber case (®ber aspect ratio �
in®nity, upper bound). Indeed, one can mathematically express the equation limits as the rule of mixtures
for continuous ®bers and modi®ed Kerner equation for spherical reinforcement. In the case of the upper
bound (continuous ®ber), the modulus in the ®ber direction is given simply by a rule of mixtures

EL � Ef/f � Em/m; �90�
where EL denotes Young's modulus along the axis of symmetry, and /f and /m are the volume fractions of
®ber and the matrix phases, respectively. For particulate ®lled systems (lower bound), the mathematical
theory which is most versatile and best predicts the experimental results over a wide volume fraction range
is that due to Kerner (1956). His complete equation is

EL � 2�1� m�
/1l1

�7ÿ5m0�l0��8ÿ10m0�l1
� /0

15�1ÿm0�
/1l0

�7ÿ5m0�l0��8ÿ10m0�l1
� /0

15�1ÿm1�

" #
; �91�

where subscripts 0 and 1 represent the matrix and ®ller phases, respectively, and the Poisson ratio, m, is
given by

H.K. Lee, S. Simunovic / International Journal of Solids and Structures 38 (2001) 875±895 887



m � m0/0 � m1/1: �92�
For comparisons, the e�ective Young's modulus along the axis of symmetry for the proposed framework
can be obtained as

EL � �n� ÿ l2
�

k�
; �93�

where the parameters �n�, l� and k� are given in Eq. (32). We will consider the following constituent elastic
properties for carbon ®ber polymer matrix composites: E0 � 3 GPa, m0 � 0:35, E1 � 380 GPa and
m1 � 0:25. Fig. 2 shows the predicted e�ective (normalized) Young's moduli in the ®ber direction EL=E0 of
AFPCs at various ®ber volume fractions /1. We plot the theoretical predictions in Fig. 2 based on Halpin±
Tsai's bounds and the proposed Eq. (93) with various ®ber aspect ratios. Clearly, our analytical predictions
are well within the Halpin±Tsai's bounds.

To illustrate the elastoplastic behavior of the present damage constitutive framework, our present
damage model considering interfacial debonding is exercised for the case of aligned carbon ®ber polymer
matrix composites. The material properties used in these simulations are E0 � 3:0 GPa, m0 � 0:35, E1 � 380
GPa, m1 � 0:25, ry � 125 MPa, h � 400 MPa and �q � 0:5. In addition, to implement the proposed prob-

Fig. 2. The comparison between the proposed predictions with various ®ber aspect ratios and Halpin±Tsai's bounds for e�ective

Young's modulus in the ®ber direction vs. ®ber volume fraction.
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abilistic micromechanics based on Weibull function into the present constitutive models, we need to esti-
mate the values of Weibull parameters S0 and M . For simplicity, we assume the Weibull parameters to be
S0 � 81:75ry and M � 40. Fig. 3 shows the e�ect of the shape of ®bers on the mechanical behavior of
AFPCs with the same ®ber volume fraction and it clearly shows that the elastoplastic behavior of the
composites is strongly dependent on the shape of ®bers. Fig. 4 exhibits the e�ect of the initial ®ber volume
fraction on the behavior and progressive debonding of the composites and includes the results for perfect
composites shown by solid lines and debonded composites shown by dashed lines. Interfacial debonding is
not observed for low ®ber volume fraction (/ � 0:2) composites. Fig. 5 exhibits the evolution of debonded
®ber volume fraction as a function of the uniaxial strain. It is seen that the composite with high initial ®ber
volume fraction is sti�er, but the in¯uence of damage on the stress±strain response of the composite is more
drastic because of quick damage evolution.

5. Conclusion

Based on the ensemble-averaging process and noninteracting e�ects of eigenstrains due to the existence
of discontinuous ®bers, a new micromechanical damage constitutive model is presented to predict e�ective
elastoplastic damage behavior of AFPCs. Stress±strain ®elds outside discontinuous ®bers are derived by
introducing an unit outnormal vector on the imaginary ellipsoid surface. Progressive interfacial debonding
is subsequently considered in accordance with Weibull's probability distribution function to characterize

Fig. 3. E�ect of the shape of ®bers on the overall uniaxial elastoplastic behavior of AFPCs.
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Fig. 4. E�ect of the initial volume fraction of ®bers on the overall uniaxial elastoplastic behavior and progressive debonding of AFPCs.

Fig. 5. The predicted evolution of debonded ®ber volume fraction corresponding to Fig 4.

890 H.K. Lee, S. Simunovic / International Journal of Solids and Structures 38 (2001) 875±895



the varying probability of ®ber debonding. The proposed analytical predictions are compared with Halpin±
Tsai's bounds for sti�ness predictions. Furthermore, the proposed closed-form damage constitutive model
is applied to the uniaxial tensile loading to illustrate damage behavior of AFPCs.

The authors are currently working on the extension of the proposed method to predict the damage
behavior of randomly oriented, discontinuous ®ber polymer composites (RFPCs). The interaction e�ect
among constituents will be considered in modeling the damage behavior of composites for both moderately
and extremely high ®ber volume fraction. Other damage mechanisms, such as matrix cracking, void nu-
cleation, etc., will be also included in our damage constitutive models to o�er more realistic damage pre-
dictions. Finally, the present micromechanical damage constitutive model will be implemented into ®nite
element code to address the progressive crushing in composite structures under impact loading.
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Appendix A. Parameters w11, . . ., w22 and u1, . . ., u3 in Eq. (31)

These parameters in Eq. (31) take the form

wij � k0 ÿ
X2

r�1

2l0/r

�gr�ij
�fr�i

(
� k0/r

�fr�j
ÿ k0/r

�gr�1j

�fr�1

�
� 2�gr�2j

�fr�2

�)
�i; j � 1; 2�; �A:1�

ui � l0

X2

r�1

1

�
� /r

�fr�i

�
�i � 1; 2; 3� �A:2�

with

�fr�i � 2�Yr � �1ÿ /r�Bi� �i � 1; 2; 3�; �A:3�

�gr�i1 �
�tr�2�Xr � �1ÿ /r� �Ai1� ÿ 2�tr�4�Xr � �1ÿ /r� �Ai2�

�tr�1�tr�2 ÿ 2�tr�3�tr�4
�i � 1; 2; 3�; �A:4�

�gr�i2 �
�tr�1�Xr � �1ÿ /r� �Ai2� ÿ �tr�3�Xr � �1ÿ /r� �Ai1�

�tr�1�tr�2 ÿ 2�tr�3�tr�4
�i � 1; 2; 3�; �A:5�

and

�tr�1 � Xr � �1ÿ /r�A1 � �fr�1; �A:6�
�tr�2 � 2Xr � 2�1ÿ /r�A2 � �fr�2; �A:7�
�tr�3 � Xr � �1ÿ /r�A3; �A:8�
�tr�4 � Xr � �1ÿ /r�A4 �A:9�
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in which

A1 � �A11; A2 � �A22; A3 � �A12; A4 � �A21; �A:10�
B1 � �B11; B2 � �B22; B3 � �B12; �A:11�

Xr � k0lr ÿ krl0

�lr ÿ l0��2�lr ÿ l0� � 3�kr ÿ k0�� ; �A:12�

Yr � l0

2�lr ÿ l0�
: �A:13�

In addition, the parameters �Aij and �Bij read

�A11 � 4m0

�
� 2

a2 ÿ 1

�
-� 4m0 � 4

3�a2 ÿ 1� ; �A:14�

�A12 � �A13 � S4 � S5; �A:15�
�A21 � �A31 � S3 � S5; �A:16�
�A22 � �A23 � �A32 � �A33 � S5; �A:17�

�B11 �
�
ÿ 4m0 � 4a2 ÿ 2

a2 ÿ 1

�
-ÿ 4m0 � 12a2 ÿ 8

3�a2 ÿ 1� ; �A:18�

�B12 � �B21 � �B13 � �B31 � S2 � S6; �A:19�
�B22 � �B33 � �B23 � �B32 � S6; �A:20�

where the components of Eshelby's tensor S1; . . . ; S6 and - are given in Eqs. (20)±(25) and (26), re-
spectively.

Appendix B. Parameters M ij and N i in Eq. (42)

These parameters are given by

Mij � ÿ 1

3
�
X2

r�1

2/r

4725�1ÿ m0�2�Vr�i�Vr�j
f1575�1ÿ 2m0�2�Wr�ii�Wr�jj

� 21�25m0 ÿ 23��1ÿ 2m0���Wr�iiUj � �Wr�jjUi�

� 21�25m0 ÿ 2��1ÿ 2m0���Wr�ii � �Wr�jj� � 3�35m2
0 ÿ 70m0 � 36� �Uij

� 7�50m2
0 ÿ 59m0 � 8��Ui �Uj� ÿ 2�175m2

0 ÿ 343m0 � 103�g �i; j � 1; 2�; �B:1�

Ni � 1

2
�
X2

r�1

/r

1575�1ÿ m0��Vr�i�Vr�i
�72

�
ÿ 140m0 � 70m2

0�Qi ÿ �75ÿ 266m0 � 175m2
0�
Ri

2

� �164ÿ 476m0 � 350m2
0�
�
�i � 1; 2; 3�; �B:2�
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where

Q1 � b; Q2 � d; Q3 � c; �B:3�

R1 � Q1 � Q2; R2 � 2Q2; R3 � Q1 � Q2; �B:4�

�Vr�i � 2�Yr �Bi� �i � 1; 2; 3�; �B:5�

�Wr�i1 �
�Zr�i1

Jr
�i � 1; 2; 3�; �B:6�

�Wr�i2 � �Wr�i3 �
�Zr�i2

Jr
�i � 1; 2; 3� �B:7�

in which Yr and Bi are given in Eqs. (A.13) and (A.12), respectively, and

�Zr�i1 � �2Xr � 2A2 � �Vr�2��Xr � �Ai1� ÿ 2�Xr �A3��Xr � �Ai2� �i � 1; 2; 3�; �B:8�

Jr � �2Xr � 2A2 � �Vr�2��Xr �A1 � �Vr�1� ÿ 2�Xr �A3��Xr �A4�; �B:9�

�Zr�i2 � �2Xr �A1 � �Vr�1��Xr � �Ai2� ÿ �Xr �A3��Xr � �Ai1� �i � 1; 2; 3�: �B:10�

In addition, the components of Ui and �Uij in Eq. (B.1) read

U1 � 3�1ÿ a4f �a2��
1ÿ a4

; �B:11�

U2 � U3 � 1
2
�3ÿU1�; �B:12�

�Uij �
b c c

c d d

c d d

2664
3775 �i; j � 1; 2; 3� �B:13�

with

f �a� �
cosÿ1 a
a
�������
1ÿa2
p ; a < 1;

coshÿ1 a
a
�������
a2ÿ1
p ; a > 1;

(
�B:14�

and

b � 5

2�1ÿ a4�2 �2� a4 ÿ 3a4f �a2��; �B:15�

c � 15a4

4�1ÿ a4�2 �ÿ3� �1� 2a4�f �a2��; �B:16�

d � 1
8
�15ÿ 3bÿ 4c�: �B:17�
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Appendix C. Components �T1, . . ., �T6 in Eq. (59)

These components are given by

�T1 � 4p1p6�t6 � 8�p1 � 2p2 � p3��p2�t2 � p6�t2 � p2�t6� � �p1 � 4p2 � 3p3�
� �p1�t4 � 4p2�t4 � p4�t4 � 2p6�t4 � p1�t5 � 4p2�t5 � 3p4�t5 � 2p4�t6�
� �p1 � 4p2 � p3 � 2p6��2p6�t1 � 4p2��t1 � 2�t2 � �t3� � p4��t1 � 4�t2 � 3�t3�
� p1��t1 � 4�t2 � �t3 � 2�t6��; �C:1�

�T2 � 4�p2p2�t2 � 2p2p6�t2 � p6p6�t2 � p2p2�t6 � 2p2p6�t6�; �C:2�
�T3 � 4p3p6�t6 � �p1 � 4p2 � 3p3��p3�t4 � p5�t4 � p3�t5 � 3p5�t5 � 2p6�t5 � 2p5�t6�

� �p1 � 4p2 � p3 � 2p6��2p6�t3 � p5��t1 � 4�t2 � 3�t3� � p3��t1 � 4�t2 � �t3 � 2�t6��; �C:3�
�T4 � 4p4p6�t6 � 8�p4 � p5��p2�t2 � p6�t2 � p2�t6� � �p4 � 3p5 � 2p6�

� �p1�t4 � 4p2�t4 � p4�t4 � 2p6�t4 � p1�t5 � 4p2�t5 � 3p4�t5 � 2p4�t6� � �p4 � p5�
� �2p6�t1 � 4p2��t1 � 2�t2 � �t3� � p4��t1 � 4�t2 � 3�t3� � p1��t1 � 4�t2 � �t3 � 2�t6��; �C:4�

�T5 � 4p5p6�t6 � �p4 � 3p5 � 2p6��p3�t4 � p5�t4 � p3�t5 � 3p5�t5 � 2p6�t5 � 2p5�t6�
� �p4 � p5��2p6�t3 � p5��t1 � 4�t2 � 3�t3� � p3��t1 � 4�t2 � �t3 � 2�t6��; �C:5�

�T6 � 4p6p6�t6: �C:6�
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