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Abstract

A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage
evolution in aligned discontinuous fiber polymer composites (AFPCs). In an attempt to estimate the overall elasto-
plastic-damage responses, an effective yield criterion is micromechanically derived based on the ensemble-volume
averaging process and first-order (noninteracting) effects of eigenstrains stemming from the existence of (prolate)
spheroidal fibers. The proposed effective yield criterion, in conjunction with the assumed overall associative plastic flow
rule and hardening law, provides analytical foundation for the estimation of effective elastoplastic behavior of ductile
matrix composites. Uniaxial elastoplastic stress—strain behavior of AFPCs is also investigated. An evolutionary in-
terfacial debonding is subsequently employed in accordance with Weibull’s probability function to characterize the
varying probability of fiber debonding. Finally, the present damage model is compared with Halpin-Tsai’s bounds for
stiffness predictions and is applied to uniaxial loading to illustrate the damage behavior of AFPCs. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Damage accumulation in fiber-reinforced organic matrix composites is a complicated progressive phe-
nomenon (Groves et al., 1987; Meraghni and Benzeggagh, 1995; Meraghni et al., 1996). It involves multiple
failure modes such as matrix cracking, fiber breakage, delamination, etc., and any of these may begin in an
early loading stage and progressively accumulate inside the materials (Wang, 1984; Caslini et al., 1987). The
presence of damage can affect the mechanical properties and, subsequently, the response of composites.
Accordingly, it is essential in structural application of the composites for the accumulated damage to be
predicted and the effect of such damage on the response and failure of the structures to be well determined.
Reviews with more details on failure of fiber-reinforced composites can be seen in Matzenmiller and
Schweizerhof (1991), Kutlu and Chang (1995), Meraghni and Benzeggagh (1995) and Meraghni et al.
(1996).
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In general, traditional continuum mechanics is based on the continuity, isotropy and homogeneity of
materials. It cannot directly solve the problem for heterogeneous composites since, microscopically, fibers
or particles are present within the composites and have a significant effect on the mechanical properties of
materials. Hence, micromechanics-based models have been developed to solve the problem on a finer scale
and to relate the mechanics of materials to their microstructure. Moreover, micromechanical approaches
enable us to evaluate and predict local stress and strain fields in each constituent. The derivation of the
constitutive equations in form of a phenomenological parameter model from entirely micromechanical
considerations creates a basis of foundation for a rigorous analysis of composite structures.

Although the concept of micromechanics can be traced back to the late 1930s (e.g., Goodier, 1937,
Eshelby, 1957, 1959, 1961), micromechanics has been widely developed since 1980s (e.g., Mura, 1987;
Nemat-Nasser and Hori, 1993; Mura et al., 1996). Reviews with more details on micromechanical pre-
diction of mechanical properties and failure of composites can be seen by Ju and Chen (1994a) and
Krajcinovic (1996), respectively. Most recently, a micromechanical analysis based on the modified Mori—
Tanaka method was performed by Meraghni and Benzeggagh (1995) and Meraghni et al. (1996) to address
the effect of matrix degradation and interfacial debonding on stiffness reduction in a random discontinuous
fiber composite. Their modeling was developed through a methodology of experimental identification of
basic damage mechanisms, which involves amplitude analysis of acoustic emission and microscopic ob-
servations. Tohgo and Weng (1994) and Zhao and Weng (1995, 1996, 1997) proposed progressive inter-
facial damage models for ductile matrix composites. They used the probability distribution function of
Weibull (1951) to describe the probability of particle debonding. Recently, Ju and Lee (1999) developed a
micromechanical damage model to predict the overall elastoplastic behavior and damage evolution in
ductile matrix composites. In their derivation, to estimate the overall elastoplastic-damage behavior, an
effective yield criterion was derived based on the ensemble-volume averaging procedure and the first-order
effects of eigenstrains stemming from the existence of inclusions.

Following the work of Zhao and Weng (1995) and Ju and Lee (1999), we propose a micromechanical
damage constitutive model for effective elastoplastic behavior of damaged composite materials to address
the damage response of aligned discontinuous fiber polymer composites (AFPCs). In our derivation, fibers
are assumed to be elastic (prolate) spheroids which are unidirectionally aligned in a ductile polymer matrix.
Furthermore, the ductile matrix behaves elastoplastically under arbitrary three-dimensional loading/
unloading histories. All fibers are assumed to be noninteracting for dilute composite medium and initially
embedded firmly in the matrix with perfect interfaces. After the interfacial debonding between fibers and
the matrix, these partially debonded fibers are regarded as equivalent, transversely isotropic inclusions. It is
worth mentioning that since the scope of this work is to predict the overall damage behavior of AFPCs
globally, the local microcrack propagation and void nucleation at the interfaces are ignored in our deri-
vation. However, it is possible to extend the proposed damage model to accommodate local damage
evolution once new damage growth model and failure criterion are developed based on rigorous experi-
ments. The proposed damage model provides the analytical basis for the estimation of damage behaviors of
AFPCs. In the future, the averaging over all orientations upon governing constitutive field equations will be
performed to obtain the constitutive relations and the overall yield function for random fiber composites.
In addition, a new failure criterion based on experimental verifications for aligned discontinuous fiber-
reinforced composites will be also proposed to perform failure analysis of AFPCs.

The present paper is organized as follows: In Section 2, to predict the overall elastoplastic-damage
behavior of AFPCs, an “‘effective yield criterion” is micromechanically constructed based on the ensemble-
volume averaging process and the first-order effects of eigenstrains due to the existence of aligned dis-
continuous fibers. The proposed elastoplastic-damage formulation is applied to uniaxial loading condition
in Section 2. An evolutionary interfacial debonding model is considered in accordance with Weibull’s
statistical function to address the varying probability of fiber debonding in Section 3. The explicit rela-
tionship is also derived in Section 3 to relate the average internal stresses of fibers and the macroscopic total
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strain. In Section 4, the present damage model is compared with theoretical bounds and is applied to the
uniaxial tensile loading to predict the various stress—strain responses of AFPCs.

2. Overall elastoplastic behavior of ACFPMCs: a micromechanical framework
2.1. Effective elastic moduli of composites with aligned discontinuous fibers

Let us start by considering an initially perfectly bonded two-phase composite consisting of a matrix
(phase 0) with bulk modulus x, and shear modulus y,, and aligned discontinuous, randomly dispersed
(prolate) spheroidal fibers (phase 1) with bulk modulus x; and shear modulus y,. When spheroidal in-
clusions (discontinuous fibers) are aligned in the 1-direction, the composite as a whole is transversely
isotropic. Subsequently, as loadings or deformations are applied, some fibers are partially debonded (phase
2), and these partially debonded fibers are regarded as equivalent, transversely isotropic inclusions.

Following Zhao and Weng (1996, 1997), a partially debonded fiber can be replaced by an equivalent,
perfectly bonded fiber which possesses yet unknown transversely isotropic moduli. The transverse isotropy
of the equivalent fiber can be determined in such a way that (a) its tensile and shear stresses will always
vanish in the debonded direction, and (b) its stresses in the bonded directions exist, since the fiber is still
able to transmit stresses to the matrix on the bonded surfaces.

When the 1-direction is chosen as symmetric and the plane 2-3 isotropic, the stress—strain relation of a
typical transversely isotropic solid can be written as

11 Ci Cp Cp 0 0 0 €11

02 Ch Cpn Cs 0 0 O €0

o3 | _|Ca C3 G 0 0 0 €33 (1)
0723 0 0 0 C44 0 0 2623 ’

g13 0 0 0 0 C55 0 2613

g12 0 0 0 0 0 C55 2612

The components of the stiffness matrix take the form

CptCoy _ —
22 =k, Cn =1, Cn =n,

2

- = Cpy = m, Css = p, @)
where k is the plane stress bulk modulus for the lateral dilatation without longitudinal extension
(k = x + p/3), m is the rigidity modulus for shearing in any transverse direction, 7 denotes the modulus for
the longitudinal uniaxial straining, / denotes the associated cross-modulus and p signifies the axial shear
modulus (Hill, 1964). Therefore, the stress—strain relations for partially debonded composite can be re-
phrased as

300 + 033) = k(e + €33) + ey,

o1 = l(ex + €33) + nieyy, (3)
O — 033 = 2m(622 - 633),
023 = 2mey;, o2 = 2pera, 013 = 2pey3.

It can be easily seen that, by using the inverse of generalized Hook’s law, the compliance matrix for a
transversely isotropic material may be expressed in the form
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For the special case of uniaxial loading, Eq. (4) can be simplified as
A
712(+kﬁ 10 0
€ij = 0 2(2—kn) 0 ol1- (5)
l
0 0 22 —kn)

The transversely isotropic fiber can be considered to be under the condition of plane stress with the
components in the 1-direction being zero. To ensure the equivalence between a partially debonded isotropic
fiber and an equivalent, perfectly bonded transversely isotropic fiber, the elastic moduli of a transversely
isotropic fiber, with the condition ¢;; = g1, = 013 = 0, can be derived as

_mBh - )
ki + 1y
where the subscripts 1 and 2 refer to phases 1 and 2 moduli, respectively.

In accordance with the notation given in Eq. (2), the stiffness tensor C, for the equivalent, transversely
isotropic fiber can be represented as

k> , L=0, =0, m=p, p=0, (6)

Co =Fu(ti, b, t3, 1, t5, ), (7)

where a transversely isotropic fourth-rank tensor F is defined by six parameters b,, (m = 1-6):

Fji(bm) = bilyii ity + by (Oufiyity + Oui;ity + O piidiy + 6 i)
+ b30;7kit; + badyiiit; + bsd0k + be(0yd + 0105), (8)
where 7 denotes the unit vector and ¢;; signifies the Kronecker delta. For a spheroid of a; # a, = a3, the 1-

direction is chosen as symmetric and therefore we have 71y = 1, 71, = 73 = 0. In addition, the six parameters
on the right-hand side of Eq. (7) take the form

t=ky+ny+my—4p, — 21, 9)
b= —my+ ps, (10)
= —ky+my+ Iy, (11)
th= —ky+my+ Iy, (12)
ts = ky — my, (13)
te = my. (14)

When considering the strain and stress fields at a local point x that is outside an inclusion, we define a
fourth-rank tensor G(x), which is called the exterior-point Eshelby’s tensor as (see, Eshelby, 1959; Mura,
1987)

G(X)E/QG(X*X,)CIX, (x eV —Q), (15)

where V' is the volume of a representative volume element and 2 denotes the inclusion domain.
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Fig. 1. Schematic description of an imaginary ellipsoid surface and its unit outward normal vector.

Exterior-point Eshelby’s tensor G(x) of an ellipsoidal inclusion can be derived by introducing an unit
outward normal vector i, shown in Fig. 1, at a matrix point x on the new imaginary ellipsoid surface which
can be defined as (see also Sun, 1998)

faTETNCT) "
where

0(9) = 0:(9)0,(9), (17)

0,(9) = m (18)

in which a; (i = 1,2,3) is one of the three semi-axes of the ellipsoid and ¥ is taken as positive and can be
uniquely solved in terms of local point x of matrix and ¢;. Ju and Sun (1998) explicitly derived the exterior-
point Eshelby’s tensor G(x) of an ellipsoidal inclusion.

As a special case of an ellipsoid, if two of the three semi-axes of the ellipsoid are the same, then the
ellipsoid will become a spheroid. Let us assume that a; # a, = a3, where the spheroid aspect ratio o is
defined as o« = a;/a,. (Interior-point) Eshelby’s tensor of a spheroidal inclusion can be obtained in a
transversely isotropic fourth-rank tensor form by letting A = 0 in the exterior-point Eshelby’s tensor given
by Ju and Sun (1998) as

S(x) = / G(x—x)dx, xeQ
o
= Fiju(S1, 52,83, 54, 55, 6), (19)

where the six parameters on the right-hand side of Eq. (19) take the form
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o -1 2 1\1/2
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o2)'* —costa] fora< 1.

i 1 =

It is noted that Eshelby’s tensor for a spheroidal inclusion in Egs. (20)—(25) should be identical to the results
of Ju and Sun (1998).

Effective elastic moduli of multi-phase composites containing randomly located, unidirectionally aligned

elastic ellipsoids were explicitly derived by Ju and Chen (1994a) accounting for far-field perturbations. For

a multi-phase composite, the effective elasticity tensor C, assuming no interaction among constituents reads

C.=C-{1+B-(1-5-B)"}, (27)
where I is the fourth-rank identity tensor, “-”” denotes the tensor multiplication and B takes the form,
B=3 ¢,S+A)7", (28)
q=1

in which 7 signifies the number of inclusion phases of different material properties, and ¢, denotes the
volume fraction of the ¢g-phase. In addition, the fourth-rank tensor A, is defined as

A, =[C,—C"-Cy. (29)

Accordingly, in the case of aligned (in the x,-direction) fiber-reinforced composites, the effective elastic
stiffness tensor C, can be explicitly derived as

C. :F;'jkl(lla12713714a15716)7 (30)
where the parameters of 1,...,14 are

n =Yy =Y — Yy + ¥+ 20, + 20, — 4¢5,

Ihp = —@, + @3,

3=V — Yy, 31)

4 =Y, — Yo,

15 = Yo,

le = @y
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in which the parameters ¥,,,...,¥,, and ¢, ..., @5 are given in Appendix A. In addition, the five effective
elastic moduli of composites with aligned discontinuous fibers read

k. =15+ 15, I, =14+ 15, m, = 1,
1 +4n+ 13+ 1y + 15+ 21, P =1 + 1. (32)

Ny

2.2. Effective elastoplastic behavior of composites with aligned discontinuous fibers

We now consider the overall elastoplastic responses of progressively debonded fiber-reinforced com-
posites which initially feature perfect interfacial bonding between fibers and the matrix in two-phase
composites. It is known that partial interfacial debonding may occur in some fibers under applied loading.
Therefore, an original two-phase composite may gradually become a three-phase composite consisting of
the matrix, perfectly bonded fibers and partially debonded fibers. In what follows, for simplicity, we will
regard partially debonded fibers as equivalent, perfectly bonded transversely isotropic fibers. For simplicity,
the von Mises yield criterion with isotropic hardening law is assumed here. Accordingly, at any matrix
material point, the stress ¢ and the equivalent plastic strain e? must satisfy the following yield function:

F(o,8") = H(o) — K*(2") <0, (33)

in which K(eP) is the isotropic hardening function of the matrix-only material. Furthermore,
H(6) =6 : 14 : o denotes the square of the deviatoric stress norm, where I signifies the deviatoric part of
the fourth-rank identity tensor I, i.e.,

L=1-l1e1, (34)

in which 1 represents the second-rank identity tensor and “®” denotes the tensor expansion.

Following Ju and Lee (1999), we denote by H(x|¥) the square of the “current stress norm’ at the local
point x, which determines the plastic strain in a composite for a given phase configuration . Since there is
no plastic strain in the elastic perfectly bonded fibers or partially debonded fibers, H(x|%) can be written as

H(x|%) = {g

(x|9) : 14 : 6(x|9) if X in the matrix,

, otherwise. (35)

In addition, (H),,(x) is defined as the ensemble average of H(x|¥) over all possible realizations where X is
in the matrix phase. Here, the angled bracket (-) signifies the ensemble average operator. Let P(%,) be the
probability density function for finding the g-phase (¢ = 1,2) configuration %, in the composite. (H),, (x)
can be obtained by integrating H over all possible perfectly bonded fibers and partially debonded fibers
configurations (for a point x in the matrix)

(H),(x)=H"+ [ {H(x|%)—-H"}P(%)dY + / {H(x|%,) — H°}P(%,)d9, (36)

4
where H° is the square of the far-field stress norm in the matrix:
H =6":1;: 06" (37)

As indicated, a matrix point receives the perturbations from perfectly bonded fibers and partially
debonded fibers. Therefore, the ensemble-average stress norm for any matrix point x can be evaluated by
collecting and summing up all the current stress norm perturbations produced by any typical perfectly
bonded fiber centered at X(l1> in the perfectly bonded fiber domain and any typical partially debonded fiber
centered at xgl) in the partially debonded fiber domain, and averaging over all possible locations of x(ll) and
xgl). As a result, we arrive at
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(H),(x) = H® + /xg'>¢5<x> {H(X\Xgl)) - HO}P(XEI)> dxg1> + /x;”gax) {H(X|X(Zl)) — HO}
X P(Xgl)) dxgl) + ey (38)

where Z(x) is the exclusion zone and P(xgl)) and P(xgl)) denote the probability density functions for finding

a perfectly bonded fiber centered at X(ll) and a partially debonded fiber centered at x(zl), respectively. Here,

for simplicity, P(xgl)) and P(xgl)) are assumed to be statistically homogeneous, isotropic and uniform. That
is, we assume that the probability density functions take the form P(xgl)) =N,;/V and P(x(zl)) =M/V,
where N; and N, are the total numbers of perfectly bonded fibers and partially debonded fibers, respec-
tively, dispersed in a representative volume V. We define a tiny equal-volume spherical probabilistic zone
with the radius a* = (alag)l/ 3 or a* =ay/oa??, where o = a /a; is the aspect ratio (the ratio of length to
diameter) of a spheroid. Further, owing to the assumption of statistical isotropy and uniformity, Eq. (38)
can be recast into a more convenient form:
o, M " . 0 N . . 0
(H), (x)=H +—/ dr {H(rl)—H}dA—i——/ dr, {Ht))—H}d4d+---, (39)
4 F>at A7) 14 Py >a*

( A(#2)

where A(7,) is a spherical surface of radius 7, (¢ = 1,2) in the probability space.
By dropping the higher order terms, the integral on the right-hand side of Eq. (39) can be evaluated and
we arrive at the ensemble-averaged current stress norm at any matrix point

(H),(x)=6¢":T:q" (40)
The components of the positive definite fourth-rank tensor T read

Ty = Fiyu(t, b, B3, 14, 5, o), (41)
where the six parameters on the right-hand side take the form,

?1 =My — My — My + My + 2N +2</V2—4</‘/3,
th=—N5+ N3,

ty = My — Mo

- ’ 42
542/%12—%23, (42)
ts = M,

E6 = JVz,

in which the parameters .#;; and ./"; are given in Appendix B.

The ensemble-averaged current stress norm at a matrix point can also be expressed in terms of the
macroscopic stress &. Following Ju and Chen (1994a), the relation between the far-field stress ¢° and the
macroscopic stress & takes the form

" =P:ao, (43)
where the fourth-rank tensor P reads

2
P=I+ Z ¢,(1-S) - (A, +S)"" = Fu(pi, 2, ps, ps, Ps, Ps) (44)

r=1

and the components py, ..., ps are
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p=Hn—Hyn—Hy+ Hp+29, 429, — 455, (45)
P = — Iy + I3, (46)
p3 = Hoy — Ho, (47)
ps = Hn — H, (48)
ps = A, (49)
Pe =4 (50)
with
i

Hi= — j=1,2 1
== (=123, (51)
I = ! (i=1,2,3) (52)

1_4%'1 l_ b b b

where
(Lon+H2)Lh — LnLn .

= i=1,2,3), 53

S (Ln+2H)( Lo+ H5)— LnL ( ) (53)
(L1 +2AH1)Ln— L0La .

.= i=1,2,3), 54
F2=Ts 2L 240 (L + H2) = 2L 1L ( ) (54)

ol S =-23)¢, .
%i—§+;2(7r)i (i=1,2,3), (55)

2 (O ety (), (1 23y)

Li=> ¢, LA - Y i,j=1,2,3). 56)

DB D S e N (2 A ) ( (

By combining Egs. (40) and (43), we arrive at the alternative expression for the ensemble-averaged
current stress norm (square) in a matrix point

(H),(x)=6:T:a, (57)
where the positive definite fourth-rank tensor T is defined as
T=P"-T-P (58)
and can be shown to be
T = Tiigiigity + T (Suit;iy + Suitjiy + Oty + 0 ity
+ T30yn; + Tydpnin; + Tsoiok + To(0udj + 00 ), (59)

where the components T7,. .., T; are given in Appendix C.
The ensemble-volume averaged ‘“‘current stress norm’ for any point x in AFPCs can be defined as

HX) = (1-¢p)Va:T:a, (60)

where ¢, is the current volume fraction of perfectly bonded fibers. Therefore, the effective yield function for
the three-phase AFPCs can be proposed as

F=(0-¢)6:T:6—-K*) (61)

with the isotropic hardening function K(eP) for the three-phase composite. The effective ensemble-volume
averaged plastic strain rate for the AFPCs can be expressed as
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- 46F Ay —
ep:A$:2(lf¢l)2AT:a, (62)

where / denotes the plastic consistency parameter.
Inspired by the structure of the micromechanically derived stress norm, the effective equivalent plastic
strain rate for the composite is defined as

é_pzy/%ép:Tf1 :Ep:2(l—¢1)2ig/%6':'f:6'. (63)

The 4 together with the yield function F must obey the Kuhn—Tucker loading/unloading conditions. In what
follows, the simple power-law type isotropic hardening function is employed as an example

K@) = /{0y +h@)}, (64)
where oy is the initial yield stress, and /4 and g signify the linear and exponential isotropic hardening para-

meters, respectively, for the three-phase composite.

2.3. Elastoplastic stress—strain relationship for partially debonded three-phase AFPCs

In order to illustrate the proposed micromechanics-based elastoplastic constitutive damage model for
AFPCs, let us consider the example of uniaxial tensile loading.
The applied macroscopic stress ¢ can be written as

11 #0, all other 6;; = 0. (65)
With the simple isotropic hardening law described by Eq. (64), the overall yield function reads

_ _ N2

F(a,e) = (1—¢)%:T: a—§{0y+h(ép)"} . (66)

Substituting Eq. (65) into Eq. (66), the effective yield function of partially debonded three-phase AFPCs for
uniaxial loading is obtained as

_ _ L _ 52
F=(1—¢ (T, + 4T+ Ty + Ty + Ts + 2T5)3°, — %{o'y n h(@p)q} , (67)
The macroscopic incremental plastic strain rate defined by Eq. (62) becomes
h+4hLh+ TG+ T+ Ts+21 0 0
Ae® =2(1 — ¢,)* Aday 0 L+T; 0 (68)
0 0 Ts + Ts

for any stress beyond the initial yielding. Similarly, the incremental equivalent plastic strain can be written
as

A = 2(1 = ¢’ AdlGul\ /AT + 4T + T+ Ty + Ts + 275, (69)
From Egs. (5) and (32), the macroscopic incremental elastic strain takes the form
ks
—Ptkoit, 0 0
Ae=| 0 st 0 |AG). (70)
0 0 L

—_—
2(12—k i)
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Furthermore, the total incremental strain is the sum of the elastic incremental strain and plastic incremental
strain.

The positive parameter 2 = 3_,(A4)" is solved from the nonlinear equation obtained by enforcing the
plastic consistency condition F = 0. Since only the uniaxial loading is under consideration, the nonlinear
equation reads (cf. Eq. (69))

(1= ¢)) (T + 40 + Ts + T + Ts + 2T4)67,

q

2 2 _ . _
:g O'y+h 2(1—¢1)2;L\/§(T| +4T2+T3+T4+T5+2T(,)|5|1| . (71)

In the case of a monotonic uniaxial loading, the overall uniaxial stress—strain relation can be obtained by
integrating Eqgs. (68) and (70) as follows:

=m0 0
e=| 0wl 0 |eu+20- 60" YA @]
1y i
0 0 2(12 —ky i)
N4+4h+ T+ T +T5+2g 0 0
x 0 L+ 0 |, (72)
0 0 T3 + T5

where (AJ)' is the ith iteration value of A/ and (&,;)" is the i-th iteration value of macroscopic uniaxial
stress.

3. Evolutionary interfacial debonding: probabilistic micromechanics

The progressive interfacial debonding may occur under increasing deformations and influence the
overall stress—strain behavior of aligned discontinuous fiber-reinforced composites. After the interfacial
debonding between fibers and the matrix, the debonded fibers lose the load-carrying capacity in the de-
bonded direction and are regarded as partially debonded fibers. For convenience, following Tohgo and
Weng (1994) and Zhao and Weng (1995, 1996, 1997), we employ the average internal stresses of fibers as the
controlling factor. The probability of partial debonding is modeled as a two-parameter Weibull process (see
Tohgo and Weng (1994), Zhao and Weng (1995), and Ju and Lee (1999)). Assuming that the Weibull (1951)
statistics governs, we can express the cumulative probability distribution function of fiber debonding
(damage), P;, at the level of hydrostatic tensile stress as

Ril(@,),] =1~ exp [— (“’S—)> ] (73)

where (), = [(611); + (622); + (F33),]/3 is the hydrostatic tensile stresses of the fibers, the subscript (-),
denotes the fiber phase, and Sy and M are the Weibull parameters.
Therefore, the current partially debonded fiber volume fraction ¢, at a given level of (4,,), is given by

b2 = BP(62),] = ¢{1 ~exp [— (%) ] } (74)

where ¢ is the original fiber volume fraction.
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The internal stresses of fibers required for the initiation of interfacial debonding were explicitly derived
by Ju and Lee (1999). For multi-phase composites, the average internal stresses of fibers can be expressed as
~1

6 =C - [I—S-(Al—i—S)’l} : [I—Zzqums-(Am—i-S)l e=U:e (75)

By carrying out the lengthy algebra, the components of the positive definite fourth-rank tensor U are
explicitly given by

Ui = Fyju(Uy, Us, U, Uy, Us, Us), (76)

where the definition of fourth-rank tensor F is given Eq. (8) and the inverse and product of fourth-rank
tensor F are given in the appendix of Ju and Chen (1994b). The components of the fourth-rank tensor U are
given by

U1 :2/11@1, (77)

Ur = 21,2, (78)

U3 = }vl (91 + 4@2 + 393) + 2#1@3, (79)

Us =21, %4, (80)

U5 = }1(@4+395+296) —|—2,Lt1=@5, (81)

U6 = 2:“196; (82)
where 7, ..., % are the parameters of the fourth-rank tensor Ejkl(gl, ..., 9¢), which is the product be-
tween two fourth-rank tensors F (i, - . ., je) and Fyu(ii, . .., is). Parameters ji,. .., js are defined as

J1 = —Si1(by +4by + b3 + 2bg) — 4S5(by + 2by + b3) — Su(by + 4by + 3b3) — 284by,

Ja = —28,(by + bg) — 2Ssbs,

J3 = — S3(by + 4by + b3 + 2bs) — Ss(by + 4by + 3bs) — 2Sebs,

Ja = — Si(bs + bs) — 4Sy(bs + bs) — Sy(by + 3bs + 2bs) — 2Ssby, (83)

j5 = — S3(b4 + b5) — S5(b4 -+ 31)5 + 2b6) — 2S6b5,

1

Je = 3~ 286bs
in which the components of Eshelby’s tensor for a spheroidal inclusion, Si, ..., Ss, are given in Egs. (20)-
(25) and by,...,bs are the parameters of the fourth-rank tensor F,(b1,...,bs), which is the inverse of
Fju(dy,...,ds) with the following parameters:

dl :Sl7 d2:S27 d3 :S3a

1 1
dy = Si, d5:—( o >+S5, do =~ 1 4. (84)
3\Ki—Ko iy —Hy 2 — 1y

In addition, i,...,is are the parameters of the fourth-rank tensor F},«H(z‘l, ...,Is), which is the inverse of
Fju(hi, ..., he) with the following parameters:

h = ¢ — 81, hy = —$1C — g2, hy = — 3 — Pag3,

1

hs = — $1c4 — 9184, hs = —¢,¢5 — ¢drgs, hs = 3~ $1¢6 — 9286, (85)

where ¢y, ..., s are the parameters of the fourth-rank tensor I:“Uk;(él, ...,Cg), which is the product between

two fourth-rank tensors F;‘jk/(Sh ...,8) and E,-kl(bl, ..., bg). Furthermore, gi,...,ge are the parameters of
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the fourt~h-rank tensor E,k/(gl, ..., &), which is the product between two fourth-ranlg tensors I:“,-jkl(Sl, ey
Ss) and Fjy(er, . . . ,es). Here, ey, ..., e are the parameters of the fourth-rank tensor Fy,(ei, . .., es), which
is the inverse of Fyyy(fi,. .., fs) with the following parameters:

S1=8, =8, f1=25;,

1 K
Ja = S, f5:§< ° al >+557

Ko =Ko Hy — Hy

[

fo=5
° 21—

+ Sg. (86)

In the case of tensile loading, the averaged internal stresses of fibers can be obtained as follows:

(611), = (Ui +4Us + Us + Uy + Us + 2Ug )éry + (Us + Us)éx + (Us + Us)éss, (87)
(622); = (Us 4+ Us)én + (Us 4 2Us) €, + Uséss, (88)
(G33); = (Us + Us)en + Uséxn + (Us + 2Us ) €33, (89)

where €1, €&, and €3 are the total (ensemble-volume averaged) strains in the 1, 2 and 3 directions, re-
spectively.

4. Numerical comparisons and simulations

The numerical and experimental studies to characterize damage evolution in discontinuous fiber-rein-
forced composites have been limited in the literature until now. One such experimental and numerical study
on randomly oriented, discontinuous fiber composites was made by Meraghni and Benzeggagh (1995) and
Meraghni et al. (1996). They introduced an experimental damage parameter, f3, to allow the modeling of
damage mechanisms. A micromechanics-based analytical simulation was also presented and compared with
the experimental data.

In order to show the validity of the proposed micromechanical framework, we now compare our ana-
Iytical predictions with bounds based on Halpin—Tsai micromechanics equations (Halpin and Kardos,
1976). One of the advantages of the Halpin-Tsai equations is that they cover both the particulate-rein-
forced case (fiber aspect ratio = unity, lower bound) and the continuous fiber case (fiber aspect ratio =
infinity, upper bound). Indeed, one can mathematically express the equation limits as the rule of mixtures
for continuous fibers and modified Kerner equation for spherical reinforcement. In the case of the upper
bound (continuous fiber), the modulus in the fiber direction is given simply by a rule of mixtures

E = Ef¢f + Emd)ma (90)

where E; denotes Young’s modulus along the axis of symmetry, and ¢; and ¢,, are the volume fractions of
fiber and the matrix phases, respectively. For particulate filled systems (lower bound), the mathematical
theory which is most versatile and best predicts the experimental results over a wide volume fraction range
is that due to Kerner (1956). His complete equation is

1 + $o
EL:2(1+V) (7—5"<J)Hﬁgfj—10“0)111 15(;:'0) 7 (91>

T=Svo)ro +(5—T0v) T T5(1—v7)

where subscripts 0 and 1 represent the matrix and filler phases, respectively, and the Poisson ratio, v, is
given by
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V= vy + V1P;- (92)

For comparisons, the effective Young’s modulus along the axis of symmetry for the proposed framework
can be obtained as

l2

EL:F[* k*,

(93)
where the parameters 7., /, and k, are given in Eq. (32). We will consider the following constituent elastic
properties for carbon fiber polymer matrix composites: Ey =3 GPa, vy =0.35, E; =380 GPa and
vy = 0.25. Fig. 2 shows the predicted effective (normalized) Young’s moduli in the fiber direction E;/E, of
AFPCs at various fiber volume fractions ¢,. We plot the theoretical predictions in Fig. 2 based on Halpin—
Tsai’s bounds and the proposed Eq. (93) with various fiber aspect ratios. Clearly, our analytical predictions
are well within the Halpin-Tsai’s bounds.

To illustrate the elastoplastic behavior of the present damage constitutive framework, our present
damage model considering interfacial debonding is exercised for the case of aligned carbon fiber polymer
matrix composites. The material properties used in these simulations are £y = 3.0 GPa, vy = 0.35, E; = 380
GPa, vi =0.25, 0, = 125 MPa, 7 = 400 MPa and g = 0.5. In addition, to implement the proposed prob-

150 - | : | : : ; |

+ —— Upper bound: Continuous fiber composites

-------- Lower bound: Sphere filled composites

------- Prediction: Discontinuous fiber composites (a=10) /
— — - Prediction: Discontinuous fiber composites (x=50) 8
— — Prediction: Discontinuous fiber composites (0=100) /o
[ — - Prediction: Discontinuous fiber composites (¢=300) /

100 + /)

E,/E,
\ N
AN

?,

Fig. 2. The comparison between the proposed predictions with various fiber aspect ratios and Halpin-Tsai’s bounds for effective
Young’s modulus in the fiber direction vs. fiber volume fraction.
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S,=81.75%c,, M=40, $=15%

2 T T
18 —— 4=100.0 ]
rrrrrrrrr 0=20.0
i -—- 0=10
1.6 [ — — 0=0.1 7

0 0.005 0.01 0.015 0.02

eIl

Fig. 3. Effect of the shape of fibers on the overall uniaxial elastoplastic behavior of AFPCs.

abilistic micromechanics based on Weibull function into the present constitutive models, we need to esti-
mate the values of Weibull parameters Sy and M. For simplicity, we assume the Weibull parameters to be
So = 81.756, and M = 40. Fig. 3 shows the effect of the shape of fibers on the mechanical behavior of
AFPCs with the same fiber volume fraction and it clearly shows that the elastoplastic behavior of the
composites is strongly dependent on the shape of fibers. Fig. 4 exhibits the effect of the initial fiber volume
fraction on the behavior and progressive debonding of the composites and includes the results for perfect
composites shown by solid lines and debonded composites shown by dashed lines. Interfacial debonding is
not observed for low fiber volume fraction (¢ = 0.2) composites. Fig. 5 exhibits the evolution of debonded
fiber volume fraction as a function of the uniaxial strain. It is seen that the composite with high initial fiber
volume fraction is stiffer, but the influence of damage on the stress—strain response of the composite is more
drastic because of quick damage evolution.

5. Conclusion

Based on the ensemble-averaging process and noninteracting effects of eigenstrains due to the existence
of discontinuous fibers, a new micromechanical damage constitutive model is presented to predict effective
elastoplastic damage behavior of AFPCs. Stress—strain fields outside discontinuous fibers are derived by
introducing an unit outnormal vector on the imaginary ellipsoid surface. Progressive interfacial debonding
is subsequently considered in accordance with Weibull’s probability distribution function to characterize
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Fig. 4. Effect of the initial volume fraction of fibers on the overall uniaxial elastoplastic behavior and progressive debonding of AFPCs.

S,=81.75%G,, M=40, 0:=20.0, 6, =50%
0.5 : x

0.4 .

0 0.005 0.01 0.015

Fig. 5. The predicted evolution of debonded fiber volume fraction corresponding to Fig 4.
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the varying probability of fiber debonding. The proposed analytical predictions are compared with Halpin—
Tsai’s bounds for stiffness predictions. Furthermore, the proposed closed-form damage constitutive model
is applied to the uniaxial tensile loading to illustrate damage behavior of AFPCs.

The authors are currently working on the extension of the proposed method to predict the damage
behavior of randomly oriented, discontinuous fiber polymer composites (RFPCs). The interaction effect
among constituents will be considered in modeling the damage behavior of composites for both moderately
and extremely high fiber volume fraction. Other damage mechanisms, such as matrix cracking, void nu-
cleation, etc., will be also included in our damage constitutive models to offer more realistic damage pre-
dictions. Finally, the present micromechanical damage constitutive model will be implemented into finite
element code to address the progressive crushing in composite structures under impact loading.
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Appendix A. Parameters ¥;, ..., ¥, and ¢,, ..., ¢; in Eq. (31)

These parameters in Eq. (31) take the form

o 2 (ﬂr)ij Jodh, _3 ('/Ir)lj 2(’7;-)2] i
Vi =t ;{2“ ot ), T @), 0‘4 (ARANSY } } (7 =1,2) (A1
— : q’)f i =
go,.f,u(); [1 +(Cr),} (i=1,2,3) (A.2)
with
&) =2%+010-9¢,)%] (i=123), (A3)
_ 0|2+ (1= ¢,) 0] = 200y, + (1 = )] . _
(nr)il - (Ur)l(nr)z _ 2(1),)3(0,-)4 ( 17 27 3)7 (A4)
_ ) [# + (1= @) o] = 03[+ (1 = d)Sn] . _
(i = (0, (07} — 20300, =129 43
and
)y =2, + (1 = ¢,) + () (A.6)
(Dr)z =22+ 2(1 - d)r)*p/Z + (Cr>27 (A7)
)y =2, + (1= ¢,) 3, (A.8)
)y =20+ (1 = ¢,) A4 (A.9)
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in which

&/1:*;%117 &/225;/223 J%B:J;/]Za %4247%217

e@1 :glly gZZQZZ; g}v:'@u;

q — )”O.Hr — )“Vlu'()
T = o) 2k, — o) +3(2 = A)]
_ Ho .
2(u, = to)

In addition, the parameters .«7;; and %;; read

A= A13 =51+ Ss,
oAy = Ay =83+ Ss,
Ay = oy =y =y =S5s,

_ 402 — 2 1202 — 8
e%H = (—4V0+O;7>w—4\10+a—
ot —1 o2 —

By = By = By = B3 = 5> + Ss,

-@22 = @33 = e@23 = 932 = S67

(A.10)
(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
(A.16)
(A.17)

(A.18)

(A.19)
(A.20)

where the components of Eshelby’s tensor S,...,S¢ and @ are given in Egs. (20)—(25) and (26), re-

spectively.

Appendix B. Parameters .#; and ./"; in Eq. (42)

These parameters are given by

%’/: -

y d) 2 .
L o, 2 O,

+21(25v0 — 23)(1 = 2w) (W), 2y + (W), ]

§

+21(25v — 2)(1 = 2v)[(#,), + (7)) + 3(35v — TOvo + 36)%;,

+7(50v2 — 59v + 8)(%; + ;) — 2(175v2 — 343v, + 103)}  (i,j = 1,2),

1 o,
Ti=at Z 1575(1 = vo)(77),(77)),

{(72 — 140vp + T00) 2, — (75 — 266w, + 17512)

N|§é

+ (164 — 476v, + 350v3)} (i=1,2,3),
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where

leb, :22201, Q3ZC,
=0 +2r, R%=22, R=2+2,

(n/r)i = 2(@r + e%)l) (l = 1’21 3)1

W)y = (%;jil (i=1,2,3),

== =123

in which %, and %, are given in Egs. (A.13) and (A.12), respectively, and

(Z)y = RA, 42,4+ (V) )X+ A =20, + L)X+ oAn) (i=1,2,3),
Ty = 2T+ 22+ (V)& + 1+ (V)] =202, + A2, + ),

(Z)n =%, + A1+ (V)X + Ao — X+ L)+ An) (i=1,2,3).

In addition, the components of #; and %;; in Eq. (B.1) read

A2
%1:3[11i§4(oc)]7

Us =AUy =3 - ),
b ¢ ¢

U c d d| (i,j=1,2,3)
c d d

with

sz g <,
f(OC) = cosh~! o 1
avo—1" x> 1

and

5

b= 20—y 2+ ot = 30 f ()],
1504 PP

d=1(15—-3b—4c).

893

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)
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Appendix C. Components T, ..., T¢ in Eq. (59)

These components are given by
Ty = 4pipsts + 8(p1 + 2p2 + p3) (Pata + pela + pals) + (p1 + 4p> + 3ps)

X (p1ts + Apats + pats + 2pety + pits + 4pats + 3pats + 2pats)
+ (pl + 4p2 +pg + 2p6)[2p6f1 + 4p2(21 + 222 + Zg.) +p4(;1 + 4?2 + 323)

+pi(f + 46 + 6 + 25)], (C.1)

Ty = 4(papats + 2papsty + pepeta + papats + 2papsls), (C2)
T5 = 4pspsts + (p1 + 4p2 + 3ps3) (p3ts + psts + psts + 3psts + 2pets + 2pste)

+ (p1 +4p2 + p3 + 2ps) 2psts + ps(f + 46 + 36) + p3(6 + 46 + 6 + 2i5))], (C.3)

Ty = 4papsts + 8(pa + ps) (p2ta + pota + pats) + (ps + 3ps + 2ps)
X (pits + Apats + pats + 2pets + pits + 4pats + 3pats + 2pats) + (pa + ps)

X [2psty +4p> (61 + 26 + 13) + pa(fy + 46 + 363) + pi (6 + 46 + 6 + 245)], (C4)
Ts = 4pspels + (ps + 3ps + 2ps) (psts + psta + pats + 3psts + 2pets + 2psie)

+ (pa + ps)2psts + ps(f + 46 + 363) + p3 (6 + 46 + 6 + 2], (C.5)
To = 4pspsts. (C-6)
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